TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets
نویسندگان
چکیده
The TRAnsient Pockets in Proteins (TRAPP) webserver provides an automated workflow that allows users to explore the dynamics of a protein binding site and to detect pockets or sub-pockets that may transiently open due to protein internal motion. These transient or cryptic sub-pockets may be of interest in the design and optimization of small molecular inhibitors for a protein target of interest. The TRAPP workflow consists of the following three modules: (i) TRAPP structure- generation of an ensemble of structures using one or more of four possible molecular simulation methods; (ii) TRAPP analysis-superposition and clustering of the binding site conformations either in an ensemble of structures generated in step (i) or in PDB structures or trajectories uploaded by the user; and (iii) TRAPP pocket-detection, analysis, and visualization of the binding pocket dynamics and characteristics, such as volume, solvent-exposed area or properties of surrounding residues. A standard sequence conservation score per residue or a differential score per residue, for comparing on- and off-targets, can be calculated and displayed on the binding pocket for an uploaded multiple sequence alignment file, and known protein sequence annotations can be displayed simultaneously. The TRAPP webserver is freely available at http://trapp.h-its.org.
منابع مشابه
Hot Spots and Transient Pockets: Predicting the Determinants of Small-Molecule Binding to a Protein-Protein Interface
Protein-protein interfaces are considered difficult targets for small-molecule protein-protein interaction modulators (PPIMs ). Here, we present for the first time a computational strategy that simultaneously considers aspects of energetics and plasticity in the context of PPIM binding to a protein interface. The strategy aims at identifying the determinants of small-molecule binding, hot spots...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملReal-time ligand binding pocket database search using local surface descriptors.
Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function c...
متن کاملHow transient pockets open on the surface of the MDM2 protein
The inhibition of protein-protein interactions is a promising strategy in anti-cancer therapy. A prominent example is the interaction between MDM2 and the tumor suppressor protein p53 that can be inhibited by small molecules identified in binding essays [1]. The structure-based design of such inhibitors suffers from the lack of welldefined binding pockets [2]. We therefore developed a pocket de...
متن کاملComparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کامل